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Abstract. We show that Nambu–Poisson and Nambu–Jacobi brackets can be defined inductively:
ann-bracket,n > 2, is Nambu–Poisson (respectively, Nambu–Jacobi) if and only if on fixing an
argument we obtain an(n − 1)-Nambu–Poisson (respectively, Nambu–Jacobi) bracket. As a by-
product we obtain relatively simple proofs of Darboux-type theorems for these structures.

1. Introduction

The concept of a Nambu–Poisson structure was introduced by Takhtajan [Ta] in order to find
an axiomatic formalism for then-bracket operation

{f1, . . . , fn} = det

(
∂fi

∂xj

)
(1.1)

proposed by Nambu [Nam] to generalize the Hamiltonian mechanics (cf also [BF, Cha, FDS]).
Takhtajan [Ta] has observed that the Nambu canonical bracket (1.1) isn-linear skew-symmetric
and satisfies thegeneralized Jacobi identity:

{f1, . . . , fn−1, {g1, . . . , gn}} = {{f1, . . . , fn−1, g1}, g2, . . . , gn}
+{g1, {f1, . . . , fn−1, g2}, g3, . . . , gn} + · · ·
+{g1, . . . , gn−1, {f1, . . . , fn−1, gn}}. (1.2)

Such an axiom was also considered by other authors about the same time (see [SV]). These,
however, are exactly the axioms of ann-Lie algebra introduced by Filippov [Fi] in 1985, who
also gave the example of the canonical Nambu bracket (1.1) in this context. The additional
assumption made by Takhtajan was that the bracket, acting on smooth functions, has to satisfy
the Leibniz rule

{fg, f2, . . . , fn−1} = f {g, f2, . . . , fn−1} + {f, f2, . . . , fn−1}g (1.3)

what generalizes the notion of a Poisson bracket and means that the bracket is, in fact, defined
by ann-vector field3 in the obvious way:

{f1, . . . , fn} = 3f1,...,fn (1.4)

where we denote3f1,...,fk to be the contractionidfk · · · idf13. The generalized Jacobi identity
(1.2) means then that theHamiltonian vector fields3f1,...,fn−1 (of (n − 1)-tuples of functions
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4240 J Grabowski and G Marmo

this time) preserve the tensor3, i.e. the corresponding Lie derivative (which we write as the
Schouten bracket) vanishes:

[3f1,...,fn−1,3] = 0. (1.5)

This also implies that the characteristic distributionD3 of the n-vector field3, i.e. the
distribution generated by all the Hamiltonian vector fields, is involutive. Indeed, from (1.2)
we easily derive (for further implications see [DT])

[3f1,...,fn−1,3g1,...,gn−1] =
∑
i

3g1,...,{f1,...,fn−1,gi },...,gn−1. (1.6)

We have even more: the characteristic distribution defines a (possible singular) foliation of
the manifoldM in the sense of Stefan–Sussmann. This is due to the fact that the module of
1-forms onM is finitely generated over the ringC∞(M) of smooth functions onM, so we
can generate the distribution by a finite number of Hamiltonian vector fields, which are closed
overC∞(M) under the Lie bracket and the Stefan–Sussmann condition of integrability of the
distribution is satisfied. The proof is exactly parallel to that in the classical Poisson case. All
this looks quite similar to the case of classical Poisson structures. Now, the point is that in
the case of Nambu–Poisson structures of ordern > 2 the leaves of the characteristic foliation
have to be either 0 orn dimensional; a different behaviour compared with the classical Poisson
case. We shall consider this point later.

Since Nambu–Poisson brackets are just the Filippov brackets which are given by multi-
derivations of the associative algebraC∞(M) (the Leibniz rule), the next obvious generalization
is to follow the idea of Kirillov [Ki] and to ask what are Filippovn-brackets on the ring of
functions, which are given by local operators. They could be calledNambu–Jacobibrackets
since the Jacobi brackets are what we obtain in the binary case (cf [Gr] for a purely algebraic
approach). It is easy to see from (1.2) that every contraction of the bracket with an element
f leads from ann-Lie algebra in the sense of Filippov (let us call them simplyn-Filippov
algebras) to an (n − 1)-Filippov algebra: the(n − 1)-ary bracket [, . . . , ]f defined by
[f1, . . . , fn−1]f = [f, f1, . . . , fn−1] satisfies the(n− 1)-Jacobi identity if the bracket [, . . . ]
satisfies then-Jacobi identity. Hence, contractions lead fromn-Nambu–Jacobi brackets to
(n − 1)-Nambu–Jacobi brackets (we will show later that it can be converted). The binary
Jacobi brackets are given by first-order differential operators [Ki, Gr], so, due to the fact
that they are totally skew-symmetric,n-Nambu–Jacobi brackets are also given by first-order
differential operators. Similarly, as in the binary case, they can be written with the help of two
multivector fields: then-vector field1 and the(n− 1)-vector field0, in the form

{f1, . . . , fn} = (1 + s(0))(f1, . . . , fn) (1.7)

where1(f1, . . . , fn) = 1f1,...,fn is just the bracket induced by1 and

s(0)(f1, . . . , fn) =
∑
i

(−1)i+1fi0f1,...,fi−1,fi+1,...,fn (1.8)

(cf [MVV]). The n-Jacobi identity puts additional restrictions on the pair(1, 0) to obtain a
Nambu–Jacobi structure. For the classical case,n = 2, they read

[0,1] = 0 (1.9)

[1,1] = −20 ∧1 (1.10)

where the brackets are the Schouten brackets. We use the Schouten bracket

[X1 ∧ . . . ∧Xk, Y1 ∧ . . . ∧ Yk] =
∑
i,j

(−1)i+j [Xi, Yj ] ∧X1 ∧

. . . ∧ X̂i ∧ . . . ∧Xk ∧ Y1 ∧ . . . ∧ Ŷj ∧ . . . ∧ Yl. (1.11)
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Let us note that sometimes one can meet a version of (1.10) differing in sign (cf [Li, DLM])
when the bracket differs in sign from the bracket we use.

In this paper we prove the inductive property of the Nambu–Poisson and Nambu–
Jacobi bracket: forn > 2, ann-linear skew-symmetric bracket of smooth functions on a
manifold is a Nambu–Poisson (respectively, Nambu–Jacobi) bracket if and only if on fixing
one argument we obtain a Nambu–Poisson (respectively, Nambu–Jacobi) bracket of order
(n − 1). As a by-product we obtain versions of Darboux-type theorems for these bracket (cf
[AG, Ga, Na1, Pa, MVV]) with relatively short proofs.

There are other concepts ofn-ary Lie, Poisson and Jacobi brackets using a generalized
Jacobi identity of different type than (1.2), a skew-symmetrization of it. We will not discuss
them here, so let us only mention the papers [APP, AIP, ILMD, ILMP, MV] and references
therein. Recently, a unification of different concepts was proposed in [VV].

2. Recursive characterization of Nambu–Poisson and Nambu–Jacobi algebras

We start with the following easy observation.

Proposition 1. LetX1, . . . , Xn be vector fields on a manifoldM. Then3 = X1 ∧ . . . ∧ Xn
is a Nambu–Poisson tensor if and only if the distributionD generated by these vector fields is
involutive at regular points of3.

Proof. The proposition has a local character, so all considerations will be local near regular
points and we may assume that the vector fields are linearly independent. Under this condition
D coincides with the characteristic distributionD3 of the tensor field3, i.e.

D = span{3f1,...,fn−1 : fi ∈ C∞(M), i = 1, . . . , n− 1}. (2.1)

If 3 is a Nambu–Poisson tensor thenD3 = D is known to be involutive. On the other hand, if
D is involutive, then it generates ann-dimensional foliation which, in appropriate coordinates,
is generated by the coordinate vector fields∂1, . . . , ∂n (a version of the Frobenius theorem), so
that3 = f ∂1∧ . . .∧∂n with some functionf . This is a standard example of a Nambu–Poisson
tensor (cf [MVV], corollary 3.2). As a matter of fact, the functionf could be chosen to be a
constant. �

Remark. At singular points of3 the situation may be different. For instance,3 = ∂1∧(x1∂2)

is a Poisson tensor, butD is not involutive at points, wherex1 = 0: [∂1, x1∂2] = ∂2 /∈ D.

We shall make use of the following variant of the lemma ‘on three planes’ (cf [MVV] or
[DZ]).

Lemma 1. Let {3i : i ∈ I } be a family of decomposable non-zeron-vectors of a vector space
V such that every sum3i1 +3i2 is again decomposable. Then,

(a) the linear spanD of the linear subspacesD3i they generate is at most(n+1)-dimensional
or

(b) the intersection∩iD3i is at least(n− 1) dimensional.

Proof. It is easy to see that the sum3i1 + 3i2 is decomposable, where the summands are
non-zero, if and only if the intersection ofn-dimensional subspacesD3i1

∩ D3i2
is at least

(n − 1) dimensional. Then we can use a corrected version of the ‘lemma on three planes’
([MVV], lemma 4.4) as in [DZ], which states that in this case we have (a) or (b), with a rather
obvious proof. �
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Lemma 2. Let3 be an n-vector field on a manifoldM, n > 2, such that all the contractions
3f , with f ∈ C∞(M), are Nambu–Poisson tensors. Then3 is decomposable at its regular
points.

Proof. The Nambu–Jacobi identity for3f reads

[3f,f1,...,fn−2,3f ] = 0 (2.2)

where [, ] stands for the Schouten bracket. It easily implies that the operationA acting on
functions by

A(f1, . . . , fn−1, g1, . . . , gn) = [3f1,...,fn−1,3]g1,...,gn (2.3)

is totally skew-symmetric (being skew-symmetric with respect tofi ’s, gi ’s and vanishing for
f1 = g1) and it is represented by a(2n − 1)-vector field, since it acts by derivation ongi ’s.
This implies that

A(f 2
1 , f2, . . . , fn−1, g1, . . . , gn) = 2f1A(f1, f2, . . . , fn−1, g1, . . . , gn). (2.4)

On the other hand, from properties of the Schouten bracket we obtain

A(f 2
1 , f2, . . . , fn−1, g1, . . . , gn) = [2f13f1,f2,...,fn−1,3]g1,...,gn

= 2f1A(f1, f2, . . . , fn−1, g1, . . . , gn)± 2(3f1,f2,...,fn−1 ∧3f1)g1,...,gn (2.5)

so that

3f1,f2,...,fn−1 ∧3f1 = 0. (2.6)

The last identity, forn > 2, implies that3 is decomposable at regular points, as shown in
[MVV], proposition 4.1, or [Ga]. �

Theorem 1. Ann-vector field3, n > 2, on a manifoldM is a Nambu–Poisson tensor if and
only if its contractions3f are Nambu–Poisson tensors for allf ∈ C∞(M). In this case,
the tensor3 can be written in appropriate coordinates around its regular points in the form
∂1 ∧ . . . ∧ ∂n.

Proof. The implication⇒ is well known and trivial. To show the converse, we can first
reduce to regular points and then make use of lemma 2 to find that3 is decomposable, say
3 = X1 ∧ . . . ∧ Xn. Now, we have to show that the distributionD generated by the linearly
independent vector fieldsX1, . . . , Xn is involutive. SinceX1 is (locally) non-vanishing, we
can find a functionf such that (again locally)X1(f ) ≡ 1. Putting nowX′i = Xi −Xi(f )X1

for i > 1, we obtain3 = X1 ∧ X′2 ∧ . . . ∧ X′n with X′i (f ) = 0. Thus3f = X′2 ∧ . . . ∧ X′n
is a Nambu–Poisson tensor by the inductive assumption, so that, in certain local coordinates,
3f = ∂1 ∧ . . . ∧ ∂n−1 as in the proof of proposition 1, and

3 = X1 ∧3f = X1 ∧ ∂1 ∧ . . . ∧ ∂n−1. (2.7)

In fact, we can additionally assume thatX1(xi) = 0 for i = 1, . . . , n − 1, replacingX1

by X1 −
∑n−1

1 X1(xi)∂i . Assuming that the characteristic distributionD generated by3 is
not involutive, we would find that [∂i, X1] /∈ D for somei, sayi = n − 1. However, then
3x1 = −X1∧ ∂2∧ . . .∧ ∂n−1 generates a distribution, which is not involutive, contrary to the
inductive assumption. �
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Corollary 1. An n-linear skew-symmetric bracket{ , . . . , } on functions on a manifoldM,
n > 2, is a Nambu–Poisson bracket if and only if its contraction with any(n − 2) functions
gives a Poisson bracket.

Proof. Since the contractions give a Poisson bracket, our bracket operation is given by an
n-linear first-order differential operator vanishing on constants, so by ann-vector field3. The
rest follows by applying theorem 1 recursively. �

We have a similar theorem for Nambu–Jacobi brackets. They have to be of the form
1 + s(0) (cf [MVV]) and we obtain particular cases: just the Nambu–Poisson structure1

(locally 0 = 0) and the bracket given bys(0) (locally,1 = 0). We find other examples by
putting in local coordinates1 = ∂1 ∧ . . .∧ ∂n and0 = ∂1 ∧ . . .∧ ∂n−1. The characterization
theorem [MVV] shows that this is a rather general picture. The following inductive theorem
will suggest an alternative proof of this characterization theorem.

Theorem 2. An n-linear skew-symmetric bracket{ , . . . , } on functions on a manifoldM,
n > 2, is a Nambu–Jacobi bracket if and only if its contraction{f, , . . . , } with any function
f is a Nambu–Jacobi bracket. Moreover,

{f1, . . . , fn} = 1f1,...,fn + s(0)(f1, . . . , fn) (2.8)

for some multivector fields1 and0 which, in some local coordinates around points where
they do not vanish, can be written in the form1 = ∂1 ∧ . . . ∧ ∂n and0 = ∂1 ∧ . . . ∧ ∂n−1.
If, locally, one of the tensors1,0 vanishes, the other is a Nambu–Poisson tensor (0 is an
ordinary Poisson tensor of rank 2 ifn = 3) and can be written as above around its regular
points.

Proof. Only the implication⇐ is non-trivial. Since the contractions are given by first-order
differential operators, our bracket is given by ann-linear first-order differential operator, i.e.
(cf equation (1.7))

{f1, . . . , fn} = 1f1,...,fn + s(0)(f1, . . . , fn) (2.9)

for an n-vector field1 and an(n − 1)-vector field0. It is easy to see that the analogous
decomposition for the contraction with the functionf yields

{f, ·, . . . , ·} = (1f + f0)− s(0f ) (2.10)

i.e.(1f +f0,−0f ) is a Nambu–Jacobi structure for allf ∈ C∞(M). In particular, forf ≡ 1,
we find that(0, 0) is a Nambu–Jacobi structure, which implies that0 is a Nambu–Poisson
tensor. If, locally,1 ≡ 0, then our original bracket is of the forms(0), so it is a Nambu–Jacobi
structure. If, on the other hand,0 vanishes locally, then our original bracket is just given by
1. However, the contractions1f give Nambu–Jacobi and hence Nambu–Poisson (0 = 0)
structures, so our bracket is a Nambu–Poisson bracket in view of theorem 1.

Since our theorem is local and it suffices to check the Jacobi identities on an open-dense
subset, we may now assume that1 6= 0 and0 6= 0.
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2.1. The casen = 3

Since for allf ∈ C∞(M) the pairs(1f + f0,−0f ) constitute the usual Jacobi structures,
according to (1.10), we have the identity

[1f + f0,1f + f0] = 20f ∧ (1f + f0). (2.11)

Computing the Schouten brackets and using the fact that0 is an ordinary Poisson structure
([0,0] = 0 and [0f , 0] = 0), we obtain

[1f ,1f ] + 2f [1f , 0] − 2f0f ∧ 0 = 20f ∧1f + 2f0f ∧ 0 (2.12)

(let us notice that [0, f ] = −0f ) which gives

[1f ,1f ] + 2f [1f , 0] − 20f ∧1f − 4f0f ∧ 0 = 0. (2.13)

Puttingf := f + 1 in (2.13), we see that

[1f , 0] − 20f ∧1 = 0 (2.14)

and hence

[1f ,1f ] + 20f ∧1f = 0. (2.15)

Further, replacingf by f 2 in (2.14), we obtain

0= [1f 2, 0] − 20f 2 ∧1 = [2f1f , 0] − 4f0f ∧1
= 2f [1f , 0] − 20f ∧1f − 4f0f ∧1 = −20f ∧1f (2.16)

which, compared with (2.15), gives

[1f ,1f ] = 0 (2.17)

for all f ∈ C∞(M). The latter equation means that1f is a Poisson tensor for each
f ∈ C∞(M), so1 is itself a Nambu–Poisson tensor (and hence decomposable) according to
theorem 1.

Assume now that1 6= 0. In view of (2.16),0f divides the decomposable tensor1f , if
only1f 6= 0, and hence also divides1. If 1f = 0 at a given point, we can use the linearization

0f ∧1g + 0g ∧1f = 0 (2.18)

of (2.16) to obtain (at this point)0f ∧1g = 0, forg chosen such that1g 6= 0, and to conclude
that0f ∧1 = 0 for all f .

Now, similarly as in ([MVV], theorem 5.1), we can find local coordinates such that
0 = ∂1 ∧ ∂2 and1 = φ∂1 ∧ ∂2 ∧ ∂3 for some functionφ. Now, since (2.13) implies that
[0f ,1f ] = 0, and puttingf = xi , i = 1, 2, we find that [∂i, φ∂i ∧ ∂3] = 0, i = 1, 2, so
that the vector fields∂1, ∂2, φ∂3 pairwise commute and we can chose local coordinates so that
φ ≡ 1. In particular,0 = 1x3.

If, locally, 1 = 0, then (2.13) reduces tof0f ∧ 0 = 0 for all f and hence0 is
decomposable, i.e.0 is an ordinary Poisson tensor of rank 2.
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2.2. The casen > 3

Since(1f + f0,−0f ) is a Nambu–Jacobi structure of order(n − 1) > 2, 1f + f0 is
a decomposable (at its regular points) Nambu–Poisson tensor. LetDf be its characteristic
distribution. The decomposable tensor1f+g + (f + g)0 is the sum of two decomposable
tensors(1f +f0)+ (1g +g0) at their regular points, so the dimension ofDf ∩Dg is at least
(n− 2) if Df ,Dg 6= {0}. It is easy to see that the intersection of non-trivialDf must be zero.

Indeed, if a vector fieldX divides all1f + f0, thenX divides0 (putf ≡ 1) and hence
all 1f , so that1f = X ∧ Y f , whereYf is an(n− 2)-vector field (all is local and for ‘most’
functionsf we have1f 6= 0). Finding a functiong such thatX(g) = 1, we can assume,
as in the proof of theorem 1, thatYfg = 0, so that1f,g = Yf 6= 0. Similarly,1g,g = Y g,
but1g,g = 0, so1g = X ∧ Y g = 0; a contradiction, since1f,g = −1g,f 6= 0. Therefore,
lemma 1 implies that the linear spanD of all the distributionsDf has the dimension6n.
Moreover, sinceD0 = D1, alsoD0 ⊂ D. Now,

(1f1 + f10)f2,...,fn−1 = 1f1,f2,...,fn−1 + f10f2,...,fn−1 ∈ D (2.19)

implies that1f1,f2,...,fn−1 ∈ D, i.e. the characteristic distributionD1 of 1 is contained inD.
However,1 is ann-tensor, so dim(D1) > n at regular points and henceD1 = D and1 is
decomposable at its regular points.

This implies that we can find local coordinates such that0 = ∂1 ∧ . . . ∧ ∂n−1 and
1 = ∂1 ∧ . . . ∧ ∂n−1 ∧ X for a vector fieldX, which we may assume to annihilate the
coordinate functionsx1, . . . , xn−1. If the characteristic distributionD = D1 are not involutive,
say [∂n−1, X] /∈ D then the Nambu–Poisson tensor

1x1 + x10 = ∂2 ∧ . . . ∧ ∂n−1 ∧ (X ± x1∂1) (2.20)

would have a non-involutive characteristic distribution; a contradiction. Therefore,1 is a
Nambu–Poisson tensor and we can write the vector fieldX in the formX = φ∂n with a
functionφ. Let us now show that the Hamiltonian vector fields of0 preserve1. Indeed, since
(1f +f0,−0f ) is a Nambu–Jacobi structure, at regular points−0f = (1f +f0)h for some
functionh and hence

−[0f,f1,...,fn−3,1f + f0] = [(1f + f0)h,f1,...,fn−3,1f + f0] = 0 (2.21)

(1f + f0 is a Nambu–Poisson tensor). However, [0f,f1,...,fn−3, f 0] = 0 (0 is a Nambu–
Poisson tensor), so that

[0f,f1,...,fn−3,1f ] = 0. (2.22)

Now putting (f, f1, . . . , fn−3) = (xi, x1, . . . , x̌i , . . . , x̌j , . . . , xn−1), where x̌i stands for
omission, we find, similarly as in the casen = 3, that ∂1, . . . , ∂n−1, φ∂n are pairwise
commuting vector fields, so we can putφ ≡ 1 in appropriate local coordinates. In particular,
0 = (−1)n1xn . �

3. Conclusions

Over the last few years interest inn-ary generalizations of the concept of Lie algebra, especially
in Nambu–Poisson and Nambu–Jacobi brackets, has been growing among mathematicians and
physicists.

We have proved that the Nambu–Poisson and the Nambu–Jacobi bracket can be defined
inductively: a bracket is such ann-bracket if and only if, when contracted with any function,
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it gives such an(n− 1)-bracket. This reduces the general case to classical Poisson and Jacobi
structures. In the proof we have used the fact that these brackets are given by decomposable
multivector fields defining first-order differential operators on the algebra of smooth functions
on a manifold.

The question, of whether an analogue of this fact is true for any (finite-dimensional)
Filippov algebra, remains open. Any Filippovn-algebra structure on a vector spaceV is
defined by a linear multivector field

3 =
∑
i1,...,in

cki1,...,inxk∂xi1 ∧ · · · ∧ ∂xin (3.1)

on V ∗, where a basis(xi) of V is regarded as a coordinate system forV ∗. This tensor field
defines ann-bracket on linear functions, which should satisfy the generalized Jacobi identity.
In general, however, such tensors need not be decomposable, since direct products of the
Filippov algebras correspond to ‘direct sums’ of the corresponding tensors, which can never
be decomposable (if the summands are non-zero). Therefore, we finish with the following
problem.

Problem. Let [·, . . . , ·] be ann-bracket,n > 2, on a finite-dimensional vector spaceV such
that [y1, . . . , yn−1]x = [x, y1, . . . , yn−1] is a Filippov(n− 1)-bracket for everyx ∈ V . Does
it imply that[·, . . . , ·] is Filippov itself?
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