IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Remarks on Nambu-Poisson and Nambu-Jacobi brackets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 4239
(http://iopscience.iop.org/0305-4470/32/23/304)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:33

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2 (1999) 4239-4247. Printed in the UK PIl: S0305-4470(99)00355-8

Remarks on Nambu—Poisson and Nambu—Jacobi brackets

J Grabowskit and G Marmoi

T Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland
T Dipartimento di Scienze Fisiche, Univegsii Napoli, Mostra d’Oltremare, Pad. 20, 80125
Naples, Italy

E-mail: jagrab@mimuw.edu.pl andgimarmo@na.infn.it
Received 23 December 1998, in final form 15 March 1999

Abstract. We show that Nambu—Poisson and Nambu-Jacobi brackets can be defined inductively:
ann-brackety > 2, is Nambu—Poisson (respectively, Nambu—Jacobi) if and only if on fixing an
argument we obtain agr — 1)-Nambu—Poisson (respectively, Nambu—-Jacobi) bracket. As a by-
product we obtain relatively simple proofs of Darboux-type theorems for these structures.

1. Introduction

The concept of a Nambu—Poisson structure was introduced by Takhtajan [Ta] in order to find
an axiomatic formalism for the-bracket operation

of;
{fi...o. ful = det(%) (1.2)
Xj

proposed by Nambu [Nam] to generalize the Hamiltonian mechanics (cf also [BF, Cha, FDS]).
Takhtajan [Ta] has observed that the Nambu canonical bracket (z-linsar skew-symmetric
and satisfies thgeneralized Jacobi identity
i, fuons {81, - &b = U oo fa1 81} 82, -+ -5 &)

+{gla {fl7 ] fn—lv g2}7 83, .- »gn} +.--

+g, s g1, {15 - fu-1s 8n}) (1.2)

Such an axiom was also considered by other authors about the same time (see [SV]). These,
however, are exactly the axioms of aLie algebra introduced by Filippov [Fi] in 1985, who

also gave the example of the canonical Nambu bracket (1.1) in this context. The additional
assumption made by Takhtajan was that the bracket, acting on smooth functions, has to satisfy
the Leibniz rule

{fg’ f27°"’ fn—l} = f{g’ f27°"’fn—l}+{f’ f27""fn—l}g (13)

what generalizes the notion of a Poisson bracket and means that the bracket is, in fact, defined
by ann-vector fieldA in the obvious way:

{fla""fn} = Af1 ..... fn (14)

where we denotd ;, 4, to be the contractiofy, - - -iqr, A. The generalized Jacobi identity
(1.2) means then that thdamiltonian vector fields\ s, _, (of (n — 1)-tuples of functions
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this time) preserve the tensay, i.e. the corresponding Lie derivative (which we write as the
Schouten bracket) vanishes:

[Afias Al =0 (1.5)

This also implies that the characteristic distributidr, of the n-vector field A, i.e. the
distribution generated by all the Hamiltonian vector fields, is involutive. Indeed, from (1.2)
we easily derive (for further implications see [DT])

[Afrfirs Dgrgoa] = ZAgl ----- {f1es fa-1:8i}nna (1.6)
i

We have even more: the characteristic distribution defines a (possible singular) foliation of
the manifoldM in the sense of Stefan—Sussmann. This is due to the fact that the module of
1-forms onM is finitely generated over the ring>° (M) of smooth functions o/, so we
can generate the distribution by a finite number of Hamiltonian vector fields, which are closed
overC* (M) under the Lie bracket and the Stefan—Sussmann condition of integrability of the
distribution is satisfied. The proof is exactly parallel to that in the classical Poisson case. All
this looks quite similar to the case of classical Poisson structures. Now, the point is that in
the case of Nambu—Poisson structures of onder2 the leaves of the characteristic foliation
have to be either 0 ar dimensional; a different behaviour compared with the classical Poisson
case. We shall consider this point later.

Since Nambu—Poisson brackets are just the Filippov brackets which are given by multi-
derivations of the associative algelar® (M) (the Leibniz rule), the next obvious generalization
is to follow the idea of Kirillov [Ki] and to ask what are Filippaw-brackets on the ring of
functions, which are given by local operators. They could be call@hbu—Jacobbrackets
since the Jacobi brackets are what we obtain in the binary case (cf [Gr] for a purely algebraic
approach). It is easy to see from (1.2) that every contraction of the bracket with an element
f leads from am-Lie algebra in the sense of Filippov (let us call them simplfilippov
algebrag to an (n — 1)-Filippov algebra: the(n — 1)-ary bracket [...,]; defined by
[f1, .oy fumalf = 1f f1, - .., fu—1] satisfies the&n — 1)-Jacobi identity if the bracket[. . .]
satisfies the:-Jacobi identity. Hence, contractions lead fraANambu—Jacobi brackets to
(n — 1)-Nambu—Jacobi brackets (we will show later that it can be converted). The binary
Jacobi brackets are given by first-order differential operators [Ki, Gr], so, due to the fact
that they are totally skew-symmetrig;Nambu—Jacobi brackets are also given by first-order
differential operators. Similarly, as in the binary case, they can be written with the help of two
multivector fields: the:-vector fieldA and the(n — 1)-vector fieldl", in the form

{fi..... i} = @A +sTN(f1, .-+, fo) (1.7)
whereA(f1, ..., fu) = Ay

SOY(fr o ) =D D™ AT fs s (1.8)

(cf [MVV]). The n-Jacobi identity puts additional restrictions on the gair, I') to obtain a
Nambu-Jacobi structure. For the classical case,2, they read

[[,A]l=0 (2.9)
[A,A]l=-2T A A (1.10)
where the brackets are the Schouten brackets. We use the Schouten bracket
[Xi A AXG YA AY] =) (=DM [XL YA X1 A
i,j
..A)?iA.../\Xk/\Yl/\...A?j/\...AY,. (1.11)
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Let us note that sometimes one can meet a version of (1.10) differing in sign (cf [Li, DLM])
when the bracket differs in sign from the bracket we use.

In this paper we prove the inductive property of the Nambu—Poisson and Nambu—
Jacobi bracket: for > 2, ann-linear skew-symmetric bracket of smooth functions on a
manifold is a Nambu—Poisson (respectively, Nambu—Jacobi) bracket if and only if on fixing
one argument we obtain a Nambu—Poisson (respectively, Nambu—Jacobi) bracket of order
(n — 1). As a by-product we obtain versions of Darboux-type theorems for these bracket (cf
[AG, Ga, Nal, Pa, MVV]) with relatively short proofs.

There are other concepts @fary Lie, Poisson and Jacobi brackets using a generalized
Jacobi identity of different type than (1.2), a skew-symmetrization of it. We will not discuss
them here, so let us only mention the papers [APP, AIP, ILMD, ILMP, MV] and references
therein. Recently, a unification of different concepts was proposed in [VV].

2. Recursive characterization of Nambu—Poisson and Nambu-Jacobi algebras

We start with the following easy observation.

Proposition 1. Let X3, ..., X, be vector fields on a manifoltf. ThenA = X; A ... A X,
is a Nambu—Poisson tensor if and only if the distributmyenerated by these vector fields is
involutive at regular points of\.

Proof. The proposition has a local character, so all considerations will be local near regular
points and we may assume that the vector fields are linearly independent. Under this condition
D coincides with the characteristic distributi@rn, of the tensor field\, i.e.

D =sparfAy, ;.. fieCoM),i=1...,n—1}. (2.1)

If A is a Nambu—Poisson tensor thBR = D is known to be involutive. On the other hand, if
D is involutive, then it generates andimensional foliation which, in appropriate coordinates,
is generated by the coordinate vector fidlds . ., 9, (a version of the Frobenius theorem), so
thatA = fd;A...A 9, with some functionf. Thisis a standard example of a Nambu—Poisson
tensor (cf [MVV], corollary 3.2). As a matter of fact, the functigncould be chosen to be a
constant. ]

Remark. At singular points ofA the situation may be different. For instande= 9; A (x192)
is a Poisson tensor, biit is not involutive at points, where, = 0: [91, x102] = 92 ¢ D.

We shall make use of the following variant of the lemma ‘on three planes’ (cf [MVV] or
[DZ]).

Lemma 1. Let{A; : i € I} be afamily of decomposable non-zereectors of a vector space
V such that every sum;, + A;, is again decomposable. Then,

(a) the linear sparD of the linear subspace3,, they generate is at mogi + 1)-dimensional
or
(b) the intersectiom; D, is at least(n — 1) dimensional.

Proof. It is easy to see that the suy, + A;, is decomposable, where the summands are
non-zero, if and only if the intersection efdimensional subspaceBAi1 N Dy, is at least

(n — 1) dimensional. Then we can use a corrected version of the ‘lemma on three planes’
(IMVV], lemma 4.4) as in [DZ], which states that in this case we have (a) or (b), with a rather
obvious proof. a
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Lemma 2. Let A be an n-vector field on a manifold, » > 2, such that all the contractions
Ay, with f e C*(M), are Nambu—Poisson tensors. Th&ris decomposable at its regular
points.

Proof. The Nambu—Jacobi identity fox ; reads

[Affrfuar Al =0 (2.2)

where [, ] stands for the Schouten bracket. It easily implies that the operatianoting on
functions by

A(flv sy ﬁ‘l—la gla ) gl’l) = [Af],.m,fnfl’ A]gl ~~~~~ &n (2'3)

is totally skew-symmetric (being skew-symmetric with respecf;® g;’s and vanishing for
f1 = g1) and it is represented by@n — 1)-vector field, since it acts by derivation @n's.
This implies that

A(f]_27 f2, AR ] fnfla glv cet gn) = 2f1A(f17 f27 cec fnflv gla AR ] gn) (24)
On the other hand, from properties of the Schouten bracket we obtain

AFE foreoos fret 810 oo 8) = R AN ffo o1y Ao
=2f1Af1, for s fuo1. 8102 80) £2(Afy o fos A AR grs (2.5)
so that

Apforsfus N =0. (2.6)

The last identity, fom > 2, implies thatA is decomposable at regular points, as shown in
[MVV], proposition 4.1, or [Ga]. |

Theorem 1. Ann-vector fieldA, n > 2, on a manifoldM is a Nambu—Poisson tensor if and
only if its contractionsA , are Nambu—Poisson tensors for gil € C*(M). In this case,
the tensorA can be written in appropriate coordinates around its regular points in the form
01 A ... A 0.

Proof. The implication=- is well known and trivial. To show the converse, we can first
reduce to regular points and then make use of lemma 2 to findAthetdecomposable, say

A = X3 A...AX,. Now, we have to show that the distributi@dhgenerated by the linearly
independent vector field§, ..., X, is involutive. SinceX; is (locally) non-vanishing, we

can find a functiorf such that (again locallyX;(f) = 1. Putting nowX; = X; — X;(f)X1

fori > 1, we obtainA = Xy A X, A ... A X, with X/(f) =0. ThusA; =X, A ... A X,

is a Nambu—Poisson tensor by the inductive assumption, so that, in certain local coordinates,
Af =091 A...A0,_1asinthe proof of proposition 1, and

AZXlAAf:X;L/\Bl/\...ABH,]_. (27)

In fact, we can additionally assume th¥i(x;) = Ofori = 1,...,n — 1, replacingX,

by X1 — Zl’l X1(x;)9;. Assuming that the characteristic distributibngenerated by is

not involutive, we would find thatd, X1] ¢ D for somei, sayi = n — 1. However, then
Ay, = —X1 A3 A ... Ad,_1 generates a distribution, which is not involutive, contrary to the
inductive assumption. O
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Corollary 1. An n-linear skew-symmetric brackét ..., } on functions on a manifold/,
n > 2, is a Nambu—Poisson bracket if and only if its contraction with ény- 2) functions
gives a Poisson bracket.

Proof. Since the contractions give a Poisson bracket, our bracket operation is given by an
n-linear first-order differential operator vanishing on constants, so myactor fieldA. The
rest follows by applying theorem 1 recursively. O

We have a similar theorem for Nambu—Jacobi brackets. They have to be of the form
A + s(I") (cf [MVV]) and we obtain particular cases: just the Nambu—Poisson strugture
(locally I' = 0) and the bracket given byT") (locally, A = 0). We find other examples by
putting in local coordinates = 91 A ... A9, andl’ = d; A ... A 3,_1. The characterization
theorem [MVV] shows that this is a rather general picture. The following inductive theorem
will suggest an alternative proof of this characterization theorem.

Theorem 2. An n-linear skew-symmetric brackgt ..., } on functions on a manifold/,
n > 2, is a Nambu-Jacobi bracket if and only if its contractipf) , ..., } with any function
f is a Nambu-Jacobi bracket. Moreover,

{fr,.... iy =2Ap 5 +sDY(fL, -0, o) (2.8)

for some multivector fielda andI" which, in some local coordinates around points where
they do not vanish, can be written in the forn= 0; A ... A 9, andl" = 91 A ... A 0,_1.

If, locally, one of the tensora, I' vanishes, the other is a Nambu—Poisson tengois(an
ordinary Poisson tensor of rank 2if = 3) and can be written as above around its regular
points.

Proof. Only the implication<= is non-trivial. Since the contractions are given by first-order
differential operators, our bracket is given byratinear first-order differential operator, i.e.
(cf equation (1.7))

{fr,.... iy =2Ap 5 +sDY(f1, .-, f0) (2.9)

for an n-vector fieldA and an(n — 1)-vector fieldT". It is easy to see that the analogous
decomposition for the contraction with the functigryields

{fireoi = (A + fT) = s(T'p) (2.10)

i.e.(Ag+ fT, =T ) isaNambu—Jacobi structure for glle C*°(M). In particular, forf = 1,
we find that(T", 0) is a Nambu—Jacobi structure, which implies thais a Nambu—Poisson
tensor. If, locallyA = 0, then our original bracket is of the for(I"), so it is a Nambu—Jacobi
structure. If, on the other handl,vanishes locally, then our original bracket is just given by
A. However, the contractiona ; give Nambu—Jacobi and hence Nambu—Pois$be=(0)
structures, so our bracket is a Nambu—Poisson bracket in view of theorem 1.

Since our theorem is local and it suffices to check the Jacobi identities on an open-dense
subset, we may now assume tidats 0 andI” # 0.
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2.1. Thecasa = 3

Since for all f € C*°(M) the pairs(As + fI", —I'y) constitute the usual Jacobi structures,
according to (1.10), we have the identity

[Af+fF, Af+fF]=2Ff/\(Af+fF). (2.11)

Computing the Schouten brackets and using the factlthiatan ordinary Poisson structure
([T,T] =0and s, I'l = 0), we obtain

[Af, Afl+2f[Af, T] = 2fTf AT =20 AA; +2fT; AT (2.12)
(let us notice thatl[, /] = —I" ) which gives

[As, Afl+2f[A;, T1 =2l AA; —4fT; AT =0. (2.13)
Putting f := f +1in (2.13), we see that

[Af,T]-=2F; AA=0 (2.14)
and hence

[Af,Af]+2T AN, =0. (2.15)
Further, replacingf by 2 in (2.14), we obtain

0=[Ap,T] =202 AA=[2fA;, T] —4fT; A A
= 2f[Af, F] — 2Ff A\ Af — 4fFf ANA = —2Ff AN Af (216)

which, compared with (2.15), gives
[A, A7]1=0 (2.17)

for all f € C*(M). The latter equation means that, is a Poisson tensor for each
f € C*(M), soA is itself a Nambu—Poisson tensor (and hence decomposable) according to
theorem 1.
Assume now that\ # 0. In view of (2.16),I" ; divides the decomposable tensby, if
only A s # 0,and hence also dividés If A ; = 0 atagiven point, we can use the linearization

Ff A\ Ag + Fg, A\ Af =0 (218)

of (2.16) to obtain (at this poini) A A, = 0, forg chosen such that, # 0, and to conclude
thatT'y A A =0 forall f.

Now, similarly as in ((MVV], theorem 5.1), we can find local coordinates such that
' = 01 A0, andA = ¢0d; A 32 A 33 for some functionp. Now, since (2.13) implies that
[Cf, Af] = 0, and puttingf = x;, i = 1,2, we find that §;, ¢p9; A 33] = 0,i = 1,2, so
that the vector fields,, 32, ¢33 pairwise commute and we can chose local coordinates so that
¢ = 1. In particular" = A,,.

If, locally, A = 0, then (2.13) reduces t¢I'y AT = O for all f and hencd" is
decomposable, i.€ is an ordinary Poisson tensor of rank 2.
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2.2. Thecase > 3

Since (A + fT, —T'y) is a Nambu—Jacobi structure of order — 1) > 2, Ay + fT is
a decomposable (at its regular points) Nambu—Poisson tensorD L&k its characteristic
distribution. The decomposable tensty., + (f + g)I' is the sum of two decomposable
tensorg Ay + fT) + (A, +gT') at their regular points, so the dimension®f N D, is at least
(n—2)if Dy, D, # {0}. Itis easy to see that the intersection of non-trivigl must be zero.

Indeed, if a vector fiel divides allA s + fT', thenX dividesI (put f = 1) and hence
all Ay, sothatA; = X A Y/, whereY/ is an(n — 2)-vector field (all is local and for ‘most’
functions f we haveA; # 0). Finding a functiorg such thatX(g) = 1, we can assume,
as in the proof of theorem 1, thaig,f =0,sothatA;, = Y/ # 0. Similarly, A, , = Y¢,
butA, ., = 0,s0A, = X A Y¢ = 0; a contradiction, sinca ;, = —A, s # 0. Therefore,
lemma 1 implies that the linear spdn of all the distributionsD; has the dimensiorn.
Moreover, sinceDr = D4, alsoDr C D. Now,

Ap+ D gfia =Dpiforfos T Al s €D (2.19)

implies thatA, 4, .+, € D, i.e. the characteristic distributiaB, of A is contained inD.
However, A is ann-tensor, so dimD,) > n at regular points and hendg, = D andA is
decomposable at its regular points.

This implies that we can find local coordinates such that= 9; A ... A 3,1 and
A =091 An...AN0,_1 A X for a vector fieldX, which we may assume to annihilate the
coordinate functionsy, ..., x,_1. Ifthe characteristic distributio® = D, are notinvolutive,
say [0,—1, X] ¢ D then the Nambu—Poisson tensor

Ay +x1l =0 A . A 01 A (X £ x101) (220)

would have a non-involutive characteristic distribution; a contradiction. Thereforis, a

Nambu—Poisson tensor and we can write the vector fielith the form X = ¢d, with a

functiong. Let us now show that the Hamiltonian vector fieldd'gfreserveA. Indeed, since
(As+ fT, —T'y) is a Nambu—Jacobi structure, at regular poials; = (A + fT'), for some

functions and hence

—Ctfrtoa Ap+ fT1=[(As+ fDpprfoan Ay + fT]=0 (2.21)

(Ay + fT is a Nambu—Poisson tensor). Howevdrt,[, s ., fI'] = 0 (I' is a Nambu-
Poisson tensor), so that

[Tt i fiar Ap] = 0. (2.22)
Now putting (f, f1, ..., fa-3) = (¥, x1,...,%i,...,%;,...,x,—1), wherex; stands for
omission, we find, similarly as in the case = 3, thatds, ..., d,_1, 9, are pairwise
commuting vector fields, so we can phit= 1 in appropriate local coordinates. In particular,
[ =(D"A,,. O

3. Conclusions

Over the last few years interestirary generalizations of the concept of Lie algebra, especially
in Nambu—Poisson and Nambu-Jacobi brackets, has been growing among mathematicians and
physicists.

We have proved that the Nambu—Poisson and the Nambu-Jacobi bracket can be defined
inductively: a bracket is such anbracket if and only if, when contracted with any function,
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it gives such arin — 1)-bracket. This reduces the general case to classical Poisson and Jacobi
structures. In the proof we have used the fact that these brackets are given by decomposable
multivector fields defining first-order differential operators on the algebra of smooth functions
on a manifold.

The question, of whether an analogue of this fact is true for any (finite-dimensional)
Filippov algebra, remains open. Any Filippavalgebra structure on a vector spakeis
defined by a linear multivector field

A= Z ck 0 Xk O, A A Oy (3.1)

on V*, where a basigx;) of V is regarded as a coordinate system¥dr This tensor field
defines am-bracket on linear functions, which should satisfy the generalized Jacobi identity.

In general, however, such tensors need not be decomposable, since direct products of the
Filippov algebras correspond to ‘direct sums’ of the corresponding tensors, which can never
be decomposable (if the summands are non-zero). Therefore, we finish with the following
problem.

Problem. Let[., ..., -] be ann-bracket,n > 2, on a finite-dimensional vector spagesuch
that[ys, ..., yo_1lx =[x, y1, ..., yu_1] is @ Filippov (n — 1)-bracket for every € V. Does
it imply that[-, ..., ] is Filippov itself?
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